总感觉用账号密码提交代码是反人类的🙂
解决方法:
SourceTree -> 偏好设置-> Git -> 使用系统安装的Git
好长时间不写博客了,能水一篇是一篇.
–EOF–
总感觉用账号密码提交代码是反人类的🙂
解决方法:
SourceTree -> 偏好设置-> Git -> 使用系统安装的Git
好长时间不写博客了,能水一篇是一篇.
–EOF–
位运算了解一下,哈哈哈哈哈哈…
Person.swift
import Foundation
extension Bool {
init(_ integer: Int){
self.init(integer != 0)
}
}
struct Person {
let TallMask = (0b00000001 << 0b00000000)
let RichMask = (0b00000001 << 0b00000001)
let HandsomeMask = (0b00000001 << 0b00000010)
var _tallRichHandsome = 0b00000000
mutating func setTall(_ tall: Bool) {
if tall {
_tallRichHandsome = (_tallRichHandsome | TallMask)
} else {
_tallRichHandsome = (_tallRichHandsome & ~TallMask)
}
}
func isTall() -> Bool {
return Bool(_tallRichHandsome & TallMask)
}
mutating func setRich(_ rich: Bool) {
if rich {
_tallRichHandsome = (_tallRichHandsome | RichMask)
} else {
_tallRichHandsome = (_tallRichHandsome & ~RichMask)
}
}
func isRich() -> Bool {
return Bool(_tallRichHandsome & RichMask)
}
mutating func setHandsome(_ handsome: Bool) {
if handsome {
_tallRichHandsome = (_tallRichHandsome | HandsomeMask)
} else {
_tallRichHandsome = (_tallRichHandsome & ~HandsomeMask)
}
}
func isHandsome() -> Bool {
return Bool(_tallRichHandsome & HandsomeMask)
}
}
main.swift
import Foundation
var person = Person()
print(person.isTall())
print(person.isRich())
print(person.isHandsome())
print("================")
print(person._tallRichHandsome)
print("===================")
person.setTall(true)
person.setRich(true)
person.setHandsome(true)
print(person.isTall())
print(person.isRich())
print(person.isHandsome())
print("===================")
//print(person.TallMask)
//print(person.RichMask)
//print(person.HandsomeMask)
person.setTall(false)
print(person.isTall())
print(person.isRich())
print(person.isHandsome())
print("==================")
//print(0b00000000)
//print(0b00000001)
//print(0b00000010)
print("==================")
print(person._tallRichHandsome)
–EOF–
//实例对象(instance对象)
//isa指针
//变量
//类对象(Class对象)
//每个类有且只有一个类对象
//class对象在内存中存储的主要信息有:
//isa指针
//superclass指针
//类属性信息(@property), 类的对象信息(instance method)
//类的协议信息(protocol),成员变量信息(ivar)
//元类对象(meta class)
//每个类只有一个元类对象
//元类对象跟类对象内存结构是一样的
//包括:
//isa指针
//superclass指针
//类的类方法信息 (class method,+号开头)
#import <Foundation/Foundation.h>
#import <objc/runtime.h>
int main(int argc, const char * argv[]) {
@autoreleasepool {
//实例对象(instance对象)
NSObject *obj1 = [[NSObject alloc] init];
NSObject *obj2 = [[NSObject alloc] init];
//类对象(Class对象)
Class objClass1 = [obj1 class]; //类对象
Class objClass2 = [obj2 class];
Class objClass3 = object_getClass(obj2);
Class objClass4 = object_getClass(obj1);
Class objClass5 = [NSObject class];
NSLog(@"%p", objClass1);
NSLog(@"%p", objClass2);
NSLog(@"%p", objClass3);
NSLog(@"%p", objClass4);
NSLog(@"%p", objClass5);
//元类对象(meta class对象)
Class metaClass = object_getClass([NSObject class]);
}
return 0;
}
–EOF–
A protocol defines a blueprint of methods, properties, and other requirements that suit a particular task or piece of functionality. The protocol can then be adopted by a class, structure, or enumeration to provide an actual implementation of those requirements. Any type that satisfies the requirements of a protocol is said to conform to that protocol.
import Foundation
//协议语法
protocol SomeProtocol {
}
struct SomeStructure: SomeProtocol {}
class SomeClass: SomeProtocol {}
//属性要求
//如果属性标注了(set get),则不能通过常量存储属性和只读计算属性来实现
//如果属性只设置了(get),那么任何类型都可以满足,包括变量存储属性
protocol SomeProtocol1 {
var mustBeSettable: Int { get set }
var doesNotNeedToBeSettable: Int { get }
}
//协议中用static修饰时,实现中用static或者class实现都行
protocol AnotherProtocol {
static var someTypeProperty: Int { get set }
}
protocol FullyNamed {
var fullName: String { get }
}
struct Person: FullyNamed {
var fullName: String
}
//可set 可 get
let john = Person(fullName: "Tom")
class Starship: FullyNamed {
var prefix: String?
var name: String
init(name: String, prefix: String? = nil) {
self.name = name
self.prefix = prefix
}
var fullName: String {
return (prefix != nil ? prefix!+" " : "") + name
}
}
var ncc1701 = Starship(name: "Enterprise", prefix: "USS")
//方法要求
//不能在协议方法中指定默认值
protocol SomeProtocol2 {
static func someTypeMethod()
}
protocol RandomNumberGenerator {
func random() -> Double
}
//线性同余生成器的伪随机数生成器算法,好高大上有木有...
class LinearCongruentialGenerator: RandomNumberGenerator {
var lastRandom = 42.0
let m = 139968.0
let a = 3877.0
let c = 29573.0
func random() -> Double {
lastRandom = ((lastRandom * a + c).truncatingRemainder(dividingBy: m))
return lastRandom / m
}
}
let generator = LinearCongruentialGenerator()
print(generator.random())
print(generator.random())
//变异方法要求 mutating method requirements
//如果希望实现协议的任何类型(类,结构体,枚举)要修改实例或者实例中的任何属性
//得在func前加mutating关键字
//类实现时,无需加mutating,结构体,枚举需要加
protocol Toggleable {
mutating func toggle()
}
enum OnOffSwitch: Toggleable {
case off, on
mutating func toggle() {
switch self {
case .on:
self = .off
case .off:
self = .on
}
}
}
var lightSwitch = OnOffSwitch.off
print(lightSwitch)
lightSwitch.toggle()
print(lightSwitch)
//初始化程序要求
protocol SomeProtocol3 {
init(someParameter: Int)
}
//required 方便子类继承,从而遵守SomeProtocol3协议
//如果给类加上final,则required可以省略
final class SomeClass3: SomeProtocol3 {
required init(someParameter: Int) {
//在这进行初始化实现
}
}
//如果子类重写父类中init方法,并且这个init也是协议中的实现,则需要用
//`required`和`override`修饰
protocol SomeProtocol4 {
init()
}
class SomeSuperClass {
init() {
}
}
class SomeSubClass: SomeSuperClass, SomeProtocol4 {
required override init() {
//good job
}
}
//协议还可以定义可失败构造器
//协议作为类型
//协议本身不实现任何功能,但是,创建的任何协议都会变成代码中成熟的类型.
//可以用协议的地方:
//1. 在函数,方法或初始化方法中作为参数或返回值
//2. 作为常量,变量,或者属性的类型
//3. 作为数组,字典或其他容器类型的元素类型
class Dice {
let sides: Int
let generator: RandomNumberGenerator
init(sides: Int, generator: RandomNumberGenerator) {
self.sides = sides
self.generator = generator
}
func roll() -> Int {
return Int(generator.random() * Double(sides)) + 1
}
}
var d6 = Dice(sides: 6, generator: LinearCongruentialGenerator())
for _ in 1...5 {
print("Random dice roll is \(d6.roll())")
}
//委托
//响应特定操作或者从外部检索数据
protocol DiceGame {
var dice: Dice { get }
func play()
}
protocol DiceGameDelegate: AnyObject {
func gameDidStart(_ game: DiceGame)
func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int)
func gameDidEnd(_ game: DiceGame)
}
class SnakesAndLadders: DiceGame {
let finalSquare = 25
let dice = Dice(sides: 6, generator: LinearCongruentialGenerator())
var square = 0
var board: [Int]
init() {
board = Array(repeating: 0, count: finalSquare + 1)
board[03] = +08; board[06] = +11; board[09] = +09; board[10] = +02
board[14] = -10; board[19] = -11; board[22] = -02; board[24] = -08
}
weak var delegate: DiceGameDelegate?
func play() {
square = 0
delegate?.gameDidStart(self)
gameLoop: while square != finalSquare {
let diceRoll = dice.roll()
delegate?.game(self, didStartNewTurnWithDiceRoll: diceRoll)
switch square + diceRoll {
case finalSquare:
break gameLoop
case let newSquare where newSquare > finalSquare:
continue gameLoop
default:
square += diceRoll
square += board[square]
}
}
delegate?.gameDidEnd(self)
}
}
class DiceGameTracker: DiceGameDelegate {
var numberOfTurns = 0
func gameDidStart(_ game: DiceGame) {
numberOfTurns = 0
if game is SnakesAndLadders {
print("Started a new game of Snakes and Ladders")
}
print("The game is using a \(game.dice.sides)-sided dice")
}
func game(_ game: DiceGame, didStartNewTurnWithDiceRoll diceRoll: Int) {
numberOfTurns += 1
print("Rolled a \(diceRoll)")
}
func gameDidEnd(_ game: DiceGame) {
print("The game lasted for \(numberOfTurns) turns")
}
}
let tracker = DiceGameTracker()
let game = SnakesAndLadders()
game.delegate = tracker
game.play()
//通过扩展遵守某个协议
protocol TextRepresentable {
var textualDescription: String { get }
}
extension Dice: TextRepresentable {
var textualDescription: String {
return "A \(sides)-sided dice"
}
}
let d12 = Dice(sides: 12, generator: LinearCongruentialGenerator())
print(d12.textualDescription)
// Prints "A 12-sided dice"
extension SnakesAndLadders: TextRepresentable {
var textualDescription: String {
return "A game of Snakes and Ladders with \(finalSquare) squares"
}
}
print(game.textualDescription)
//有条件的遵守协议
extension Array: TextRepresentable where Element: TextRepresentable {
var textualDescription: String {
let itemsAsText = self.map { $0.textualDescription }
return "[" + itemsAsText.joined(separator: ", ") + "]"
}
}
let myDice = [d6, d12]
print(myDice.textualDescription)
//通过协议适应某种类型
//如果某个类型已经符合协议的所有要求,但尚未声明它采用该协议,则可以使其采用带有空扩展的协议
struct Hamster {
var name: String
var textualDescription: String {
return "A hamster named \(name)"
}
}
extension Hamster: TextRepresentable {}
let simonTheHamster = Hamster(name: "Simon")
let somethingTextRepresentable: TextRepresentable = simonTheHamster
print(somethingTextRepresentable.textualDescription)
// Prints "A hamster named Simon"
//协议类型的集合
let things: [TextRepresentable] = [game, d12, simonTheHamster]
for thing in things {
print(thing.textualDescription)
}
//协议继承
还是有点烧脑….
–EOF–
通用代码使您能够根据您定义的要求编写可以使用任何类型的灵活,可重用的函数和类型。您可以编写避免重复的代码,并以清晰,抽象的方式表达其意图。
泛型是Swift最强大的功能之一,Swift标准库的大部分内容都是使用通用代码构建的。
import Foundation
//泛型函数
func swapTwoValues<T>(_ a: inout T, _ b: inout T) {
let tmp = a
a = b
b = tmp
}
var a = 1, b = 2
print("\(a)====\(b)")
swapTwoValues(&a, &b)
print("\(a)====\(b)")
//泛型类型(泛型类,泛型结构体,泛型枚举),听起来挺高大上,其实就是给自定义类加个泛型
struct Stack<Element> {
var items: [Element] = []
mutating func push(_ item: Element) {
items.append(item)
}
mutating func pop() -> Element {
return items.removeLast()
}
}
//扩展泛型类型
extension Stack {
var topItem: Element? {
return items.isEmpty ? nil : items[items.count - 1]
}
}
var strings = Stack<String>()
strings.push("hello")
print(strings.topItem)
print(strings.pop())
//泛型约束(不限于泛型类型,除了泛型类型就是TM的泛型函数)
//泛型约束不能省略,如果省略value == v就不能运行了,没法玩了.
//泛型约束必须是特定类继承,或符合特定协议或协议组合
//这里Equable不能被替换为String,因为String是结构体,不能被继承.Int, Bool, Double, anything else...
//返回值不能用泛型,🙂because the type to use for T is inferred from the types of values passed to the function.
// (因为类型都是从传递给函数的值的类型推断出来的),除非再传一个参数,类似:
// func findIndex1<T: Equatable, S: SignedInteger>(of value: T,in array: [T], _ type: S) -> S?
// 告诉一下Swift,接下来会发生什么,不然Swift心里会发慌...
func findIndex1<T: Equatable>(of value: T,in array: [T]) -> Int? {
for (i, v) in array.enumerated() {
if value == v {
return i
}
}
return nil
}
let arr = ["a", "b", "c", "d", "e"]
let index = findIndex1(of: "a", in: arr)
print(index)
//关联类型
//协议中的泛型,实现具体类型的时候,由自己指定泛型类型为某种具体类型.
protocol Container {
associatedtype Item
mutating func append(_ item: Item)
var count: Int { get }
subscript(i: Int) -> Item { get }
}
//这里typealias item不能等于协议,例如typealias Item = Equatable
//这样Swift就不知道`EquableStack`应该怎么分配内存了有木有...,谁TM知道`EquableStack`实现了几个协议
//脚踏了几只船?
//typealias Item = Int删掉也可以,可以通过append,推断出Item类型
struct IntStack: Container {
mutating func push(_ item: Item) {
items.append(item)
}
mutating func pop() -> Item {
return items.removeLast()
}
typealias Item = Int
var items: [Item] = []
mutating func append(_ item: Item) {
items.append(item)
}
var count: Int {
return items.count
}
subscript(i: Int) -> Item {
return items[i]
}
}
//上面的Stack可以写作下面方式
//因为通过append可以知道Element为Item的具体类型,所以typealias可以省略
//又因为Stack1是泛型类型,Element创建实例对象时具体指出,所以,一下代码完全正确.
//可以写typealias Item = Element, 然后Element跟Item可以互相交叉替换🙂
struct Stack1<Element>: Container {
var items = [Element]()
mutating func push(_ item: Element) {
items.append(item)
}
mutating func pop() -> Element {
return items.removeLast()
}
//conformance to the Container
mutating func append(_ item: Element) {
push(item)
}
var count: Int {
return items.count
}
subscript(i: Int) -> Element {
return items[i]
}
}
var strings1 = Stack1<String>()
strings.push("hello")
print(strings.topItem)
print(strings.pop())
//扩展现有类型以指定关联类型
//array 中有append用来推断具体类型,并且有count,有下标
//所以以后完全可以使用Array作为Container
//但是typealias Container = Array也是不错的
extension Array: Container {}
//将约束添加到关联类型
//如果这样定义,得像下面这样搞
//struct Stack1<Element: Equatable>: Container
protocol Container1 {
associatedtype Item: Equatable
mutating func append(_ item: Item)
var count: Int { get }
subscript(i: Int) -> Item { get }
}
//在关联类型的约束中使用协议
//这个JB关系有点乱,有木有...
//儿子有一个家,爹有一个家,儿子从爹那继承过来的家跟自己成立的家必须是一个家,不能搞分家...
//大概就是这样了....
protocol SuffixableContainer: Container {
associatedtype Suffix: SuffixableContainer where Suffix.Item == Item
func suffix(_ size: Int) -> Suffix
}
extension Stack1: SuffixableContainer {
func suffix(_ size: Int) -> Stack1 {
var result = Stack1()
//max是用来防止程序崩溃的,🙂
for index in max((count-size), 0)..<count {
result.append(self[index])
}
return result
}
// Inferred that Suffix is Stack.
}
var stackOfInts = Stack1<Int>()
stackOfInts.append(10)
stackOfInts.append(20)
stackOfInts.append(30)
let suffix = stackOfInts.suffix(3)
//Generic Where Clauses(通用条款)
//泛型条件约束吧... where
func allItemsMatch<C1: Container, C2: Container>(_ someContainer: C1, _ anotherContainer: C2) -> Bool where C1.Item == C2.Item, C1.Item: Equatable {
// Check that both containers contain the same number of items.
if someContainer.count != anotherContainer.count {
return false
}
// Check each pair of items to see if they're equivalent.
for i in 0..<someContainer.count {
if someContainer[i] != anotherContainer[i] {
return false
}
}
// All items match, so return true.
return true
}
var stackOfStrings = Stack1<String>()
stackOfStrings.push("uno")
stackOfStrings.push("dos")
stackOfStrings.push("tres")
var arrayOfStrings = ["uno", "dos", "tres"]
if allItemsMatch(stackOfStrings, arrayOfStrings) {
print("All items match.")
} else {
print("Not all items match.")
}
extension Stack1 where Element: Equatable {
func isTop(_ item: Element) -> Bool {
guard let last = items.last else {
return false
}
return item == last
}
}
//如果将没有遵守Equatable用于该方法,会报错
if stackOfStrings.isTop("tres") {
print("Top element is tres.")
} else {
print("Top element is something else.")
}
//上面where扩展类型,下面where扩展协议,这TM就比较6了...
extension Container where Item: Equatable {
func startsWith(_ item: Item) -> Bool {
return count >= 1 && self[0] == item
}
}
if [9, 9, 9].startsWith(42) {
print("Starts with 42.")
} else {
print("Starts with something else.")
}
//Item是特定类型的where子句
extension Container where Item == Double {
func average() -> Double {
var sum = 0.0
for index in 0..<count {
sum += self[index]
}
return sum / Double(count)
}
}
print([1260.0, 1200.0, 98.6, 37.0].average())
//关联类型和泛型子句
protocol Container2 {
associatedtype Item
mutating func append(_ item: Item)
var count: Int { get }
subscript(i: Int) -> Item { get }
associatedtype Iterator: IteratorProtocol where Iterator.Element == Item
func makeIterator() -> Iterator
}
protocol ComparableContainer: Container2 where Item: Comparable {}
//泛型下标
extension Container2 {
subscript<Indices: Sequence>(indices: Indices) -> [Item]
where Indices.Iterator.Element == Int {
var result = [Item]()
for index in indices {
result.append(self[index])
}
return result
}
}
真是烧脑的玩意……
–EOF–
模块化,可重用的编译器以及工具链技术集合.
创始人: Chris Lattner
LLVM不是Low Level Virtual Machine(低级虚拟机)的缩写,LLVM就是他的项目全名.
GCC
Clang
词法分析,语法分析,语义分析,生成中间代码
中间代码优化
生成机器码
优点:
整个LLVM架构
LLVM后端(代码优化,目标代码生成等)
clang -ccc-print-phases main.m
➜ TestSwift clang -ccc-print-phases main.swift
0: input, "main.swift", object
1: linker, {0}, image
2: bind-arch, "x86_64", {1}, image
➜ TestOC clang -ccc-print-phases main.m
0: input, "main.m", objective-c
1: preprocessor, {0}, objective-c-cpp-output
2: compiler, {1}, ir
3: backend, {2}, assembler
4: assembler, {3}, object
5: linker, {4}, image
6: bind-arch, "x86_64", {5}, image
Swift比OC少了4个编译阶段呐,有木有…
clang -E main.m
//源文件
print("Hello World")
//预处理输出
➜ TestSwift clang -E main.swift
clang: warning: main.swift: 'linker' input unused [-Wunused-command-line-argument]
//源文件
#define AGE 10
int main(int argc, const char * argv[]) {
int a = 10;
int b = 20;
int c = a + b + AGE;
return 0;
}
//预处理输出
➜ TestOC clang -E main.m
# 1 "main.m"
# 1 "<built-in>" 1
# 1 "<built-in>" 3
# 373 "<built-in>" 3
# 1 "<command line>" 1
# 1 "<built-in>" 2
# 1 "main.m" 2
# 11 "main.m"
int main(int argc, const char * argv[]) {
int a = 10;
int b = 20;
int c = a + b + 10;
return 0;
}
clang -fmodules -E -Xclang -dump-tokens main.m
➜ TestSwift clang -fmodules -E -Xclang -dump-tokens main.swift
clang: warning: main.swift: 'linker' input unused [-Wunused-command-line-argument]
clang: warning: argument unused during compilation: '-fmodules' [-Wunused-command-line-argument]
clang: warning: argument unused during compilation: '-Xclang -dump-tokens' [-Wunused-command-line-argument]
➜ TestOC clang -fmodules -E -Xclang -dump-tokens main.m
int 'int' [StartOfLine] Loc=<main.m:11:1>
identifier 'main' [LeadingSpace] Loc=<main.m:11:5>
l_paren '(' Loc=<main.m:11:9>
int 'int' Loc=<main.m:11:10>
identifier 'argc' [LeadingSpace] Loc=<main.m:11:14>
comma ',' Loc=<main.m:11:18>
const 'const' [LeadingSpace] Loc=<main.m:11:20>
char 'char' [LeadingSpace] Loc=<main.m:11:26>
star '*' [LeadingSpace] Loc=<main.m:11:31>
identifier 'argv' [LeadingSpace] Loc=<main.m:11:33>
l_square '[' Loc=<main.m:11:37>
r_square ']' Loc=<main.m:11:38>
r_paren ')' Loc=<main.m:11:39>
l_brace '{' [LeadingSpace] Loc=<main.m:11:41>
int 'int' [StartOfLine] [LeadingSpace] Loc=<main.m:13:5>
identifier 'a' [LeadingSpace] Loc=<main.m:13:9>
equal '=' [LeadingSpace] Loc=<main.m:13:11>
numeric_constant '10' [LeadingSpace] Loc=<main.m:13:13>
semi ';' Loc=<main.m:13:15>
int 'int' [StartOfLine] [LeadingSpace] Loc=<main.m:14:5>
identifier 'b' [LeadingSpace] Loc=<main.m:14:9>
equal '=' [LeadingSpace] Loc=<main.m:14:11>
numeric_constant '20' [LeadingSpace] Loc=<main.m:14:13>
semi ';' Loc=<main.m:14:15>
int 'int' [StartOfLine] [LeadingSpace] Loc=<main.m:15:5>
identifier 'c' [LeadingSpace] Loc=<main.m:15:9>
equal '=' [LeadingSpace] Loc=<main.m:15:11>
identifier 'a' [LeadingSpace] Loc=<main.m:15:13>
plus '+' [LeadingSpace] Loc=<main.m:15:15>
identifier 'b' [LeadingSpace] Loc=<main.m:15:17>
plus '+' [LeadingSpace] Loc=<main.m:15:19>
numeric_constant '10' [LeadingSpace] Loc=<main.m:15:21 <Spelling=main.m:9:13>>
semi ';' Loc=<main.m:15:24>
return 'return' [StartOfLine] [LeadingSpace] Loc=<main.m:17:5>
numeric_constant '0' [LeadingSpace] Loc=<main.m:17:12>
semi ';' Loc=<main.m:17:13>
r_brace '}' [StartOfLine] Loc=<main.m:18:1>
eof '' Loc=<main.m:18:2>
clang -fmodules -fsyntax-only -Xclang -ast-dump main.m
➜ Test clang -fmodules -fsyntax-only -Xclang -ast-dump main.swift
clang: warning: main.swift: 'linker' input unused [-Wunused-command-line-argument]
clang: warning: argument unused during compilation: '-fmodules' [-Wunused-command-line-argument]
clang: warning: argument unused during compilation: '-Xclang -ast-dump' [-Wunused-command-line-argument]
➜ TestOC clang -fmodules -fsyntax-only -Xclang -ast-dump main.m
TranslationUnitDecl 0x7ff3730298e8 <<invalid sloc>> <invalid sloc>
|-TypedefDecl 0x7ff373029e60 <<invalid sloc>> <invalid sloc> implicit __int128_t '__ int128'
| `-BuiltinType 0x7ff373029b80 '__int128'
|-TypedefDecl 0x7ff373029ed0 <<invalid sloc>> <invalid sloc> implicit __uint128_t 'unsigned__ int128'
| `-BuiltinType 0x7ff373029ba0 'unsigned __int128'
|-TypedefDecl 0x7ff373029f70 <<invalid sloc>> <invalid sloc> implicit SEL 'SEL *'
| `-PointerType 0x7ff373029f30 'SEL *'
| `-BuiltinType 0x7ff373029dc0 'SEL'
|-TypedefDecl 0x7ff37302a058 <<invalid sloc>> <invalid sloc> implicit id 'id'
| `-ObjCObjectPointerType 0x7ff37302a000 'id'
| `-ObjCObjectType 0x7ff373029fd0 'id'
|-TypedefDecl 0x7ff37302a138 <<invalid sloc>> <invalid sloc> implicit Class 'Class'
| `-ObjCObjectPointerType 0x7ff37302a0e0 'Class'
| `-ObjCObjectType 0x7ff37302a0b0 'Class'
|-ObjCInterfaceDecl 0x7ff37302a190 <<invalid sloc>> <invalid sloc> implicit Protocol
|-TypedefDecl 0x7ff37302a4f8 <<invalid sloc>> <invalid sloc> implicit __NSConstantString 'struct__ NSConstantString_tag'
| `-RecordType 0x7ff37302a300 'struct __NSConstantString_tag'
| `-Record 0x7ff37302a260 '__NSConstantString_tag'
|-TypedefDecl 0x7ff37302a590 <<invalid sloc>> <invalid sloc> implicit __builtin_ms_va_list 'char *'
| `-PointerType 0x7ff37302a550 'char *'
| `-BuiltinType 0x7ff373029980 'char'
|-TypedefDecl 0x7ff373062488 <<invalid sloc>> <invalid sloc> implicit __builtin_va_list 'struct__ va_list_tag [1]'
| `-ConstantArrayType 0x7ff373062430 'struct __va_list_tag [1]' 1
| `-RecordType 0x7ff3730622a0 'struct __va_list_tag'
| `-Record 0x7ff373062200 '__va_list_tag'
`-FunctionDecl 0x7ff373062758 <main.m:11:1, line:18:1> line:11:5 main 'int (int, const char **)'
|-ParmVarDecl 0x7ff3730624f8 <col:10, col:14> col:14 argc 'int'
|-ParmVarDecl 0x7ff373062610 <col:20, col:38> col:33 argv 'const char **':'const char**'
`-CompoundStmt 0x7ff373062bd8 <col:41, line:18:1>
|-DeclStmt 0x7ff373062928 <line:13:5, col:15>
| `-VarDecl 0x7ff3730628a8 <col:5, col:13> col:9 used a 'int' cinit
| `-IntegerLiteral 0x7ff373062908 <col:13> 'int' 10
|-DeclStmt 0x7ff3730629d8 <line:14:5, col:15>
| `-VarDecl 0x7ff373062958 <col:5, col:13> col:9 used b 'int' cinit
| `-IntegerLiteral 0x7ff3730629b8 <col:13> 'int' 20
|-DeclStmt 0x7ff373062b88 <line:15:5, col:24>
| `-VarDecl 0x7ff373062a08 <col:5, line:9:13> line:15:9 c 'int' cinit
| `-BinaryOperator 0x7ff373062b60 <col:13, line:9:13> 'int' '+'
| |-BinaryOperator 0x7ff373062b18 <line:15:13, col:17> 'int' '+'
| | |-ImplicitCastExpr 0x7ff373062ae8 <col:13> 'int' <LValueToRValue>
| | | `-DeclRefExpr 0x7ff373062a68 <col:13> 'int' lvalue Var 0x7ff3730628a8 'a' 'int'
| | `-ImplicitCastExpr 0x7ff373062b00 <col:17> 'int' <LValueToRValue>
| | `-DeclRefExpr 0x7ff373062aa8 <col:17> 'int' lvalue Var 0x7ff373062958 'b' 'int'
| `-IntegerLiteral 0x7ff373062b40 <line:9:13> 'int' 10
`-ReturnStmt 0x7ff373062bc0 <line:17:5, col:12>
`-IntegerLiteral 0x7ff373062ba0 <col:12> 'int' 0
LLVM IR有三种表示形式(本质等价,好比水的气态,液态,固态)
1.text: 便于阅读的文本格式,类似于汇编语言,扩展名.ll
> clang -S -emit-llvm main.m
; ModuleID = 'main.m'
source_filename = "main.m"
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.14.0"
; Function Attrs: noinline nounwind optnone ssp uwtable
define i32 @main(i32, i8**) #0 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
%5 = alloca i8**, align 8
%6 = alloca i32, align 4
%7 = alloca i32, align 4
%8 = alloca i32, align 4
store i32 0, i32* %3, align 4
store i32 %0, i32* %4, align 4
store i8 **%1, i8*** %5, align 8
store i32 10, i32* %6, align 4
store i32 20, i32* %7, align 4
%9 = load i32, i32* %6, align 4
%10 = load i32, i32* %7, align 4
%11 = add nsw i32 %9, %10
%12 = add nsw i32 %11, 10
store i32 %12, i32* %8, align 4
ret i32 0
}
attributes #0 = { noinline nounwind optnone ssp uwtable "correctly-rounded-divide-sqrt-fp-math"="false" "disable-tail-calls"="false" "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-jump-tables"="false" "no-nans-fp-math"="false" "no-signed-zeros-fp-math"="false" "no-trapping-math"="false" "stack-protector-buffer-size"="8" "target-cpu"="penryn" "target-features"="+cx16,+fxsr,+mmx,+sahf,+sse,+sse2,+sse3,+sse4.1,+ssse3,+x87" "unsafe-fp-math"="false" "use-soft-float"="false" }
!llvm.module.flags = !{!0, !1, !2, !3, !4, !5, !6}
!llvm.ident = !{!7}
!0 = !{i32 1, !"Objective-C Version", i32 2}
!1 = !{i32 1, !"Objective-C Image Info Version", i32 0}
!2 = !{i32 1, !"Objective-C Image Info Section", !" __DATA,__ objc_imageinfo,regular,no_dead_strip"}
!3 = !{i32 4, !"Objective-C Garbage Collection", i32 0}
!4 = !{i32 1, !"Objective-C Class Properties", i32 64}
!5 = !{i32 1, !"wchar_size", i32 4}
!6 = !{i32 7, !"PIC Level", i32 2}
!7 = !{!"Apple LLVM version 10.0.0 (clang-1000.11.45.2)"}
//什么鬼东西
2.memory: 内存格式
3.bitcode: 二进制格式,扩展名.bc
clang -c -emit-llvm main.m
;
开头@
开头,局部标识符以%
开头alloca
在当前函数栈帧中分配内存i32
,32bit,4个字节的意思align
,内存对齐store
,写入数据load
,读取数据–EOF–
–EOF–
–EOF–
代码来自泊学
–EOF–